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Abstract. We calculate the photon emission of a high finesse cavity moving in vacuum. The cavity is
treated as an open system. The field initially in the vacuum state accumulates a dephasing depending
on the mirrors motion when bouncing back and forth inside the cavity. The dephasing is not linearized
in our calculation, so that qualitatively new effects like pulse shaping in the time domain and frequency
up-conversion in the spectrum are found. Furthermore we predict the existence of a threshold above which
the system should show self-sustained oscillations.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 03.70.+k Theory of quan-
tized fields – 12.20.Ds Specific calculations

Vacuum field fluctuations exert radiation pressure on scat-
terers in vacuum. For a pair of mirrors at rest this effect is
well known as Casimir effect [1]. When a mirror is moving
radiation pressure of vacuum fluctuations leads to a dis-
sipative force which opposes itself to the mirrors motion.
This force is known to arise as soon as the mirror has a
non-uniform acceleration [2]. Accordingly the electromag-
netic field remains not in the vacuum state but photons
are emitted by the scatterer into vacuum [3]. Radiation
from a moving mirror and the associated radiation reac-
tion force imply that dissipative effects are associated with
the motion of mirrors in vacuum, although this motion has
no further reference than vacuum itself. Since these effects
challenge the principle of relativity of motion in vacuum, it
would be very important to obtain experimental evidence
for them and to study their characteristics in detail.

Motion-induced radiation can be interpreted as a re-
sult of dephasing of vacuum fields depending on the mir-
rors motion. The order of magnitude of the dephasing is
expected to be the ratio between the mirror’s velocity v
and the speed of light c. For most conceivable motion of a
macroscopic object, the velocity v cannot greatly exceed
the sound velocity and is thereby much slower than that of
light. This is why motion-induced radiation is very small
for a single mirror oscillating in vacuum. This conclusion
holds for perfectly reflecting mirrors as well as for partly
transmitting ones.
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A number of works have been devoted to photon pro-
duction inside the cavity built with a pair of perfectly
reflecting mirrors moving in vacuum [4–7]. However no
predictions can be made for the amount of radiation emit-
ted outside the cavity when the resonator is treated as a
closed system. In contrast the resonant enhancement is
found to be determined by the cavity finesse when the
cavity is treated as an open system [8] from which the pho-
tons can escape. Motion induced radiation, that is photon
emission outside a cavity oscillating in vacuum is reso-
nantly enhanced by the cavity finesse when compared to
the radiation from a single oscillating mirror. The reso-
nant enhancement occurs when the mechanical frequency
is a multiple of the lowest cavity mode. Even and odd mul-
tiples correspond respectively to breathing modes, where
the mechanical cavity length changes periodically, and to
translation modes, where the cavity moves as a whole [9].
The latter effect reminds radiation from a single mirror
inasmuch as vacuum fluctuations are the only reference
for the cavity motion. However the order of magnitude of
photon emission may greatly exceed the one from a single
mirror. From an experimental point of view the cavity is so
far the most interesting system to look for an experimental
observation of dissipative effects of vacuum fluctuations.

Inside a cavity the field undergoes many reflections
before leaving the cavity through one of the mirrors. The
number of round-trips of the field is roughly given by the
cavity finesse. In loose terms, one may define an effec-
tive velocity where the physical velocity v normalized by
the speed of light is multiplied by the number of round-
trips inside the cavity. Effective velocity and thus motion-
induced radiation become the larger the higher is the cav-
ity finesse. The effective velocity is no longer a material
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velocity and may therefore approach the speed of light. In
contrast to the single mirror’s case, qualitatively new ef-
fects are expected, such as the formation of a pulse bounc-
ing back and forth in the cavity [6,7]. Since the pulse dura-
tion is shorter than the time of flight through the cavity,
the radiation spectrum should also contain various fre-
quencies corresponding to higher-order cavity modes and
thus exceeding the mechanical frequency.

These effects cannot be obtained with a linear treat-
ment as the one used in [9]. In such a treatment the field
scattering is supposed to be linear in the mirrors motion.
The field-mirror interaction corresponds to a coupling of
the vacuum field radiation pressure, which is quadratic in
the field, to the mirrors mechanical motion. Photons are
thus emitted in pairs. In the linear regime the generation
of motion-induced radiation is analogous to a parametric
process during which the mechanical excitation is trans-
formed into a pair of photons. Due to energy conserva-
tion the sum of their frequencies equals the oscillation fre-
quency. Therefore motion-induced photons are only emit-
ted at frequencies smaller than the excitation frequency.
The linear assumption is correct as long as the total field
dephasing due to interaction with the moving reflector re-
mains small. The field dephasing from one reflection scales
with the mirrors velocity over the speed of light. The lin-
ear assumption is always satisfied for a single macroscopic
mirror.

However for a cavity the crucial parameter is the effec-
tive velocity and the total field dephasing can become im-
portant for a high finesse cavity. As a consequence we ex-
pect frequency multiplication to occur which generates fre-
quencies larger than the mechanical excitation frequency.
The linear treatment, which predicts the emission fre-
quencies to be smaller than the oscillation frequency, then
looses its validity and has to be replaced by a treatment
which fully accounts for a large field dephasing produced
through successive reflections of the field onto the mirrors.
This treatment will be called non-linear in the following
although the scattering is still linear in the field.

The aim of the present paper is to give a treatment of
the radiation emitted by a cavity moving in vacuum which
takes into account both the effect of accumulated field de-
phasing and the open character of the cavity. In particular
we will study the explicit dependence of motional radia-
tion on the two experimentally accessible parameters, the
mirrors velocity and the cavity finesse. We will first intro-
duce general calculation techniques for a single mirror and
for a cavity moving in vacuum with an arbitrary motion.
We will then concentrate on a particular motion, the har-
monic oscillation of the mirrors, which allows to evaluate
in closed analytical form the correlation functions of the
radiation through a special parametrization of the motion.
We will give expressions for the time-dependent radiated
energy as well as the frequency-dependent radiation spec-
trum.

1 Single mirror moving in vacuum

Neglecting all effects related to polarizations, the electro-
magnetic field Φ is considered as a scalar function of one
space variable, t and x, and will be written as a sum of
two counterpropagating components ϕ and ψ which are
functions of two light-cone variables u and v

Φ(t, x) = ϕ(u) + ψ(v)

u = t− x, v = t+ x. (1)

For the sake of simplicity, the velocity of light is set to
unity. We limit ourselves here to two-dimensional space-
time calculations. As is well-known from the analysis of
squeezing experiments [10], the transverse structure of the
cavity modes does not change appreciably the results ob-
tained from this simplified model. Each transverse mode
is correctly described by a two-dimensional model as soon
as the size of the mirrors is larger than the spot size as-
sociated with the mode. The two-dimensional model thus
corresponds to a situation where one transverse mode is
efficiently coupled to the moving mirrors.

We now represent the mirror’s motion either by a
function x = q(t) associated with the trajectory or as
a monotonous function v = V (u) relating the light cone
variables u and v of the light rays intersecting on the mir-
ror’s trajectory. A propagation component ϕout of the out-
put field can then be written as a function of the input
fields ϕin and ψin and of the function V

ϕout =
√
Rψin ◦ V +

√
Tϕin

T = 1−R

(h ◦ g) (u) = h (g (u)) . (2)

The symbol ◦ represents the composition law for func-
tions. The coefficients

√
R and

√
T are the reflection and

transmission amplitudes describing scattering upon the
mirror. For the sake of simplicity, we have assumed these
coefficients to be real and frequency independent.

We now recall the standard calculation of the energy
radiated into vacuum by the moving mirror [2]. The input
fields are supposed to be in the vacuum state and charac-
terized by the correlation function

〈ϕin(u)ϕin(ū)〉 = −
h̄

4π
ln |u− ū| −

ih̄

8
ε(u− ū). (3)

The first term corresponds to the anticommutator and is
state-dependent whereas the second term gives the com-
mutator contribution and is state-independent. Since ε is
the sign function, it is clear that the field commutator re-
mains unchanged under the transformation (2) where u
is replaced by a monotonous function V (u). The change
of the correlation function between the input and output
field is given by the following function which depends on
the field anticommutators only

C(u, ū) = 〈ϕ′out(u)ϕ′out(ū)〉 − 〈ϕ′in(u)ϕ′in(ū)〉

= −
h̄R

4π

(
V ′(u)V ′(ū)

(V (u)− V (ū))2
−

1

(u− ū)2

)
· (4)
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Throughout the paper, the prime signifies a derivative of
a function with respect to its argument. The energy den-
sity eu(u) radiated per unit time is given by the function
C(u, ū = u) evaluated at coinciding points through a point
splitting regularization procedure [2]

eu(u) = C(u, u) = −
h̄R

24π
SV(u)

SV =
V ′′′

V ′
−

3

2

(
V ′′

V ′

)2

· (5)

The function SV is the Schwarzian derivative of V . No
radiation is emitted when the reflector has a uniform ac-
celeration, which corresponds to a vanishing Schwarzian
derivative SV . The total energy radiated by the moving
mirror can then be obtained by integrating the energy
density over u. In the following, we will concentrate on
the particular case of an oscillatory motion of mechani-
cal frequency Ω. In this case the energy Eu radiated per
period is read as

Eu =

∫ 2π
Ω

0

eu(u)du. (6)

In order to characterize the radiation we have also to de-
scribe its spectral properties. The radiation spectrum may
be represented as a density of photons obtained from the
Fourier transform of the two point function C(u, ū). We
will turn to its description later on.

2 Cavity moving in vacuum

The vacuum field is defined on both sides of the cavity as
in the previous section. The relation between input and
output fields is a generalization of (2) which corresponds
to the standard Fabry-Perot theory

ϕout = −
√
R2ψin ◦ V−1 +

√
R1T2

∑
n≥0

rnψin ◦ Vn

+
√
T1

√
T2

∑
n≥0

rnϕin ◦ Un

T1 = 1 − R1, T2 = 1−R2, r =
√
R1

√
R2 = e−2ρ. (7)

The reflection and transmission amplitudes of the two mir-
rors are related through unitarity conditions. The coeffi-
cient r determines the attenuation factor of the field on a
single cavity round-trip. It can also be written as a func-
tion of the cavity losses ρ. Throughout the paper we will
use ρ when we consider the experimentally interesting case
of a high finesse cavity with ρ � 1. In the more general
case the reflection coefficient r will be used. The functions
Un and Vn represent the light cone variables associated
with the various input rays which are transformed into
the output light ray u by the cavity. When the cavity is
at rest they are given by simple relations

Un (u) = u− 2nL

Vn (u) = u− (2n+ 1)L. (8)

Fig. 1. Space-time diagram of on arbitrary field trajectory
bouncing back and forth inside the cavity. Both mirrors are
supposed to follow a harmonic motion. Light rays are indicated
by null lines, i.e. straight lines making a 45◦-angle with the
time and space axis.

The length L of the cavity is measured as a time of flight
between the two mirrors; the two mirrors are supposed to
be located at x = ±L/2 respectively; the ray V−1 repre-
sents the particular case where the field has been directly
reflected back by the first encountered mirror without en-
tering the cavity.

We may deduce the field emitted by the vibrating cav-
ity through the same expression (7) as for the motionless
cavity, but with functions Un and Vn now given by the
procedure sketched in Figure 1. The functions Un and Vn
corresponding to the various light rays in Figure 1 are
built up through a functional iteration,

Un = f2n Vn = f2n+1

f−1 = g f0 = I

f2n = g−1 ◦ f2n−1 f2n+1 = h ◦ f2n (9)

where I is the identity function (I (u) = u), while the two
functions h and g−1(inverse of g) represent the trajectories
of the mirrors

x = q1(t) =⇒ v = h(u)

x = q2(t) =⇒ v = g(u)⇒ u = g−1(v). (10)

The function f2n results from n successive compositions of
the function g−1 ◦ h. This construction is quite analogous
to the one described in [7], but it is written here such that
it may be applied to an open cavity.

In a linear treatment [9] the total field dephasing re-
mains small. At every reflection the field acquires a de-
phasing due to the mirrors motion 2qi(t), (i = 1, 2). In
this case the composition of functions (9) is reduced to
the summation of the mirrors motion. The accumulated
dephasing after M roundtrips inside the cavity is now
seen to be simply M times the dephasing due to a single
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roundtrip. The scattered field then has a temporal vari-
ation which reproduces the mirrors motion. With these
approximations the results of the linear treatment are re-
covered.

However, if the field undergoes a great number of
roundtrips inside the cavity, the total dephasing does not
remain small and a linearization is not valid anymore. The
dephasing has then to be calculated through the general
composition law (9). Following the same procedure as for
the single mirror, we calculate the density of energy eu(u)
radiated to the right through the two-point correlation
function defined as in (4) by letting ū come to coincidence
with u. As all functions now depend on a single parameter
u, we omit this parameter in the expression for the energy
density

eu = −
h̄

4π

R2

6
Sf−1 − 2T2

∑
n≥0

rn+1 f ′−1f
′
2n+1

(f−1 − f2n+1)2

+
T 2

2R1

6

∑
n≥0

r2nSf2n+1 +
T1T2

6

∑
n≥0

r2nSf2n

+ T1T2

∑
n6=m≥0

rn+m f ′2nf
′
2m

(f2n − f2m)2

+ T 2
2R1

∑
n6=m≥0

rn+m f ′2n+1f
′
2m+1

(f2n+1 − f2m+1)2

 · (11)

Compared to the radiated energy density of a single mir-
ror (5), we now find a sum of Schwarzian derivatives corre-
sponding to different numbers n of round-trips inside the
cavity, as well as new terms arising from the interference
between light rays having undergone a different number
of roundtrips.

The derivatives appearing in the upper equation are
iteratively deduced from each other through relations (9)
and the chain rules associated with derivation of composed
functions

(g ◦ h)
′

= h′ g′ ◦ h

S (g ◦ h) = Sh+ h′2 (Sg) ◦ h. (12)

In the general case of arbitrary motions of the two mir-
rors, the various relations which have been written in the
present section allow to compute the energy density radi-
ated by a cavity built with partly transmitting mirrors.

3 Harmonic motions and periodic orbits

From now on we focus our attention on configurations
which have been shown to be the most efficient ones to
generate motion-induced radiation [9] and which further-
more allow us to put the problem in a simpler form.

We consider that the two mirrors follow harmonic mo-
tions at such a frequency that the motion-induced effects,
i.e. motional radiation and motional force, are resonantly

enhanced by the multiple interference taking place inside
the cavity. The frequency Ω of the harmonic motion is
thus supposed to be such that ΩL is a multiple of π

ΩL = Kπ. (13)

The amplitudes of the two motions are supposed to have
the same absolute value with either opposite or identical
signs depending on the parity of the integer number K

Ωq1(t) = −
Kπ

2
− β sin

(
Ωt−

(K + 1)π

2

)
Ωq2(t) =

Kπ

2
− β sin

(
Ωt+

(K + 1)π

2

)
β = th(α). (14)

We have written the two equations of motion in terms
of dimensionless numbers. In particular, one distinguishes
two parameters α and β. β represents the ratio between
the maximal velocity of the mirrors and the velocity of
light while α plays the role of a rapidity which will be
found to add up through successive reflections when one
considers the composed motion of both mirrors.

When K is an even number, the upper equations de-
scribe a situation where the two mirrors are oscillating
such that the length of the cavity changes periodically. In
the opposite case, the cavity performs a global oscillation
with its length kept constant. The two cases will be called
even and odd modes respectively in the following. A cav-
ity motion corresponding to an odd mode is reminiscent of
motion-induced radiation from a single oscillating mirror,
but in addition here the radiation is resonantly enhanced
inside the cavity. These statements follow from the lin-
earized approach [9] but we expect a similar behavior to
take place in the full treatment developed in the present
paper.

There exist periodic orbits such that the optical length
seen by the field bouncing back and forth in the cavity
is the same on successive round-trips despite the motion
of the mirrors [7]. These orbits correspond to particular
values ũ of the light-cone variable u such that the iter-
ation procedure leads to expressions similar to the ones
obtained when the mirrors are at rest (cf. (8)). Although
definition (9) of fp is different depending on whether p
is even or odd, the periodic orbits generalize the usual
resonance condition of the Fabry-Perot theory

fp(ũ) = ũ− pL. (15)

They therefore give rise to a constructive interference ef-
fect, analogous to that occurring for a motionless cavity.
Since the light rays corresponding to a periodic orbit en-
counter the mirrors at the same position after an arbitrary
number of round-trips, the composition (9) of motions
leads to a simple power law for the derivatives evaluated
after n roundtrips as well as for the Schwarzian derivatives

f ′p(ũ) = e2pα

Sfp(ũ) = Sf(ũ)
1− e4pα

1− e4α
· (16)
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There exist two sets of periodic orbits which correspond
to opposite values of α in (16). These two periodic or-
bits attract (respectively repel) the neighboring trajecto-
ries, when e4α is greater (respectively smaller) than unity.
Only the attractive orbit is expected to give rise to a large
enhancement of the motional radiation.

In expression (11) of the energy density the Schwarzian
derivative ( 16) is multiplied by the squared reflection co-
efficient after n roundtrips r2n. Summation over the num-
ber of roundtrips leads then to a geometric progression of
r2ne8nα. The first factor represents the attenuation of the
energy density associated with the cavity losses through
the two mirrors. The second one accounts for the paramet-
ric amplification of the field associated with the mirrors’
motion. As a consequence, the energy density takes large
values when the parametric amplification compensates the
losses. In fact, a divergence of the energy density should
occur when re4α approaches unity. This corresponds ex-
actly to the oscillation threshold of a mechanically excited
parametric amplifier. Let us notice that the approach de-
veloped in the present paper does not remain valid above
this threshold.

We have focussed our attention here on the case where
periodic orbits correspond to light rays meeting the two
mirrors at their mean positions, respectively −L/2 and
L/2. There exist more general situations where the light
rays meet the mirrors at other positions [7] which will not
be considered here. Notice that the particular case studied
in the present paper is interesting from an experimental
point of view since it corresponds to the maximum value
of the parameter α for motions having a given frequency
and a given amplitude.

In the following, we will restrict our attention to the
cases of practical interest where the physical velocity of
the mirror remains small when compared to the velocity
of light. As discussed in the Introduction, this condition
is always met for macroscopic mirrors. It implies that a
single reflection produces a small dephasing on the field
and, thereby, small radiation effects. Precisely, this means
that the quantity Sf which appears in (16) has an ex-
tremely small value while the factor e2α is very close to
unity. It follows that a large number n of roundtrips is
needed to obtain a factor e2nα differing appreciably from
unity and therefore giving rise to a noticeable radiation.
We show now that this assumption permits to perform the
functional iteration in an analytical manner.

The crucial point is that the functional iteration (9)
may in this case be restricted to the sub-space of peri-
odic functions h corresponding to homographic relations
between the phases eiΩu and eiΩh(u)

eiΩh(u) =
aeiΩu + b

b∗eiΩu + a∗
=⇒ A(h) =

(
a b
b∗ a∗

)
(17)

a and b are two complex constants and a∗ and b∗ their
complex conjugates which can be gathered in a matrix
A(h) associated with the function h. Attention may be re-
stricted to matrices having a determinant equal to unity.
In the sub-space of functions (17), the composition of two
functions merely corresponds to a product of their corre-

sponding matrices.

A(h ◦ g) = A(h)A(g). (18)

Rigorously speaking, the function (17) does not corre-
spond to sinusoidal trajectories (14) but rather to specific
trajectories already considered by Law for dealing with
photon production inside a closed cavity [6]

a = eiφachα, b = eiφbshα

sin (Ωq − φa) = −β sin (Ωt− φb) (19)

where the reduced velocity β gives the mirrors velocity
compared to the speed of light. Variations of the phase
factors φa and φb amount to displacements of the trajec-
tory along the space and time axis. At the limit of small
velocities however, the trajectory (19) is reduced to an
ordinary sinusoidal motion (14)

β � 1 =⇒ Ωq = φa − β sin (Ωt− φb) . (20)

The difference between the two motions scales as the cube
β3 of velocity and is therefore extremely small for realistic
motions of macroscopic mirrors. The effect of the trajec-
tory (19) is thus indistinguishable from the effect of the
sinusoidal motion for a single reflection.

If one considers two oscillating mirrors, the two func-
tions h and g, corresponding to the first and second mirror,
are associated with two matrices A(h) and A(g) respec-
tively. The matrix components are chosen to fit equations
(14) of motion of the two mirrors

A(h) =

(
(−i)Kchα iK+1shα

(−i)K+1shα iKchα

)

A(g) =

(
iKchα (−i)K+1shα

iK+1shα (−i)Kchα

)
· (21)

As the composition of the two functions corresponds to
a product of their matrices, the composition law natu-
rally produces a homographic function when the number
of reflections becomes large. This essential feature will be
used in the following to compute the temporal and spectral
characteristics of motional radiation from purely algebraic
manipulations of the associated matrices. In particular,
the functions fp in equation (9) corresponding to succes-
sive reflections of the field inside the cavity are obtained
through matrix multiplication

Ap =

(
(−i)Kpchpα i2K+1(−i)Kpshpα

(−i)2K+1iKpshpα iKpchpα

)
· (22)

The discrepancy between the composed functions built on
the two motions (14) and (19) does not affect the results
if β � 1 . More precisely, the difference between the com-
posed functions fp built on the two motions (14) and (19)
remains of the order of β2 when the number of iterations
increases.
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4 Pulse shaping

In the following, we will analyze the case of a single mir-
ror following a trajectory (17) with an arbitrary velocity
parameter α. Although the hypothesis of a large rapidity
α is not realistic for a single mirror, it can be used as a
model for the composition of a large number of round trips
inside the cavity. We will then come to the full treatment
of the cavity where interferences have also to be accounted
for.

The derivative h′(u) may be written from (17) as

h′(u) =
1

|a+ be−iΩu|
2 (23)

h′(u) oscillates between the extremal values exp (±2α)
which correspond to physical velocities of the mirror ±β.
For homographic functions (17), the Schwarzian derivative
has the simple form

Sh =
Ω2

2

(
1− h′2

)
. (24)

The total energy radiated to the right by a single mirror
is then obtained by averaging the energy density (5) over
one oscillation period

Eu =
h̄RΩ

12
sh2α. (25)

This energy does not saturate when the parameter α in-
creases although the velocity scales as thα and remains
smaller than the velocity of light. The radiated energy is
always greater than the squared velocity th2α which was
the value suggested by the linear treatment [9]. However
it is impossible to obtain appreciable radiation with a sin-
gle oscillating mirror for velocities small compared to the
speed of light. In the realistic case of a mirror moving at a
small velocity the radiated energy as well as the number
of emitted photons scale with α2.

We come now to the energy density radiated by an
oscillating cavity, assuming that a large number of round-
trips is necessary to compensate the small velocity of the
mirrors and thus get a noticeable radiation. The energy
density eu may be obtained from (11) by using the follow-
ing properties of the Schwarzian derivative of fp and of
the first-order derivative f ′p respectively

Sfp =
Ω2

2

(
1− f ′2p

)
f ′p =

1

ch2pα+ (−1)Ksh2pα sinΩu
· (26)

To plot the energy density for different linear and non-
linear regimes we introduce effective quantities

αeff = 2α/ρ

βeff = th(αeff ). (27)

The effective rapidity αeff is given by the roundtrip value
of the rapidity multiplied by the cavity finesse ρ−1. In

0 π 2π 3π 4π
Ωt

0

eu

αeff = 0.9
αeff = 0.5
αeff = 0.3

Fig. 2. Energy density emitted to the right by the cavity as a
function of time for different effective rapidities αeff and r =
0.99. The top line of the frame corresponds to 10−3h̄Ω2. With
increasing values of the effective rapidity the energy starts to
concentrate in pulses emitted periodically by the cavity. The
pulses become very sharp close to the threshold of oscillation
αeff = 1.

contrast to the mechanical velocity v normalized by the
speed of light, which has to remain much smaller than 1 in
any physical situation, the corresponding effective veloc-
ity βeff can become an important fraction of the speed of
light when the field undergoes a large number of reflections
inside the cavity. The maximal value of the effective re-
duced velocity is limited to βeff ∼ 0.76 by the divergence
of the energy density at αeff = 1. This value corresponds
indeed to the threshold re4α = 1 which has already been
mentioned previously for the periodic orbits.

The variation of the energy density for different param-
eters αeff is presented in Figure 2. In the linear regime
where αeff � 1 the temporal variation of the emitted
energy is sinusoidal. When αeff increases the energy con-
centrates in pulses which are periodically emitted by the
cavity. This pulse shaping becomes the more pronounced,
the width of the pulses the smaller, the larger becomes the
effective rapidity and thus the accumulated field dephas-
ing.

In the same manner as for the single mirror the total
energy radiated by the cavity is computed by averaging
the energy density over one oscillation period 2π/Ω. As
previously we will restrict our attention to a realistic case,
where the mirrors velocity is small which justifies the use
of the homographic relations. In this case we may replace
the differences of functions in the denominators of (11)
by their motionless values (8). Higher order contributions
decrease with the inverse of their squared order. The sums
over the number of roundtrips can then be performed and
we find the following expression for the energy radiated to
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the right

Eu =
h̄ΩR2

12
sh2α+

h̄ΩT2

48
(ζu(α) + ζu(−α)− 2)

−
h̄ΩT2

8π2K2

(
ξ(α)(ζu(α) − e−2α)

+ξ(−α)(ζu(−α)− e2α)
)

ζu(α) =
(1− e−4ρ)e2α + T1(1− e2α)

1− e4(α−ρ)

ξ(α) =
∞∑
l=1

e2l(α−ρ)

l2ch2αl
· (28)

The energy Ev radiated to the left can be obtained from
the above formula by interchanging the indices 1 and 2
of the reflection and transmission coefficients. The total
energy radiated in both directions is then evaluated as
the sum of the two contributions

E = Eu +Ev. (29)

The total radiated energy would diverge for α = ρ. How-
ever this limit is not reached as the energy density already
diverges when 2α/ρ approaches unity. The reason for this
difference is simply that the widths of the various contri-
butions to the energy density decrease when the number of
roundtrips n increases, so that the contribution to the in-
tegrated energy increases less rapidly than the peak value
of the energy density. As a consequence, the divergence of
the peak density occurs before the divergence of the inte-
grated energy. We remind here that our calculation does
not remain valid above the oscillation threshold. Still it
may be expected that a large amount of radiation is emit-
ted above threshold.

For experimental reasons one might also be interested
in the amount of energy stored inside the cavity. Let us
first remark that inside the cavity the fields propagat-
ing to the right and to the left are not independent from
each other due to the boundary conditions. All intracav-
ity quantities thus contain the field components of both
directions and are obtained as the sum of the two con-
tributions. Having this argument in mind the intracavity
energy, integrated over the cavity length L = Kπ/Ω, is
then with the same notations as above found to be

E =
h̄ΩK

48
(ζ(α) + ζ(−α) − 2)

−
h̄Ω

8π2K
(ξ(α)ζ(α) + ξ(−α)ζ(−α) − 2ξ(0))

ζ(α) =
1

2
(ζu(α) + ζv(α)). (30)

The energy density is here directly expressed with respect
to the static Casimir energy which is recovered when the
cavity is motionless [2]. This result is due to the fact that
the vacuum outside and inside the cavity is not the same
but differs exactly by this amount of energy.

In order to obtain an appreciable value for the radiated
energy if the cavity is moving at a small velocity, it is

necessary to consider a high finesse cavity ρ� 1, keeping
in mind that the finesse should be limited by the condition
αeff < 1. Using these assumptions equations (29, 30) may
be approximated as follows by expanding separately the
common denominator and numerators

E ≈
h̄Ω

6
α2 +

h̄Ω

6

(
1−

1

K2

)
ρα2

ρ2 − α2

E ≈
h̄Ω

24

(
K −

1

K

)
α2

ρ2 − α2

α ≤
ρ

2
� 1. (31)

The first term in the radiated energy is due to the field
which is directly reflected by the two mirrors without en-
tering the cavity. This term corresponds to the expression
for motion-induced radiation from a single perfectly re-
flecting mirror. The second term has its origin in the field
which has traversed the cavity and thus accumulated a
much more important dephasing than the singly reflected
field. Neglecting α2 in the denominator leads to the lin-
ear result presented in [9]. The linear approximation is
found to be rigorously valid if the rapidity is much smaller
than the cavity losses (α � ρ). Furthermore the present
treatment allows us to calculate motion-induced radiation
when the field dephasing becomes large due to accumula-
tion on a large number of reflections. Equations (31) have
a range of validity extending up to the threshold αeff = 1.

The intracavity energy contains only the term corre-
sponding to the field which has entered the cavity. Its
expression can also be deduced from the radiated energy
through a detailed balance argument, which goes as fol-
lows [9]: the energy inside the cavity can be obtained
from the radiated energy by multiplying it by two fac-
tors Ω/(2π) and 2L/(4ρ). The first factor is due to the
fact that the radiated energy is the energy density inte-
grated over one oscillation period. During one roundtrip
of duration 2L each photon has the probability 4ρ - corre-
sponding to the energy transmission coefficient of the two
mirrors - to escape from the cavity. The present non-linear
evaluation of the intracavity energy gives indeed the same
result as the balance argument in the limiting case of a
high finesse cavity (cf. Eqs. (31)). However, as equations
(28, 30) show the balance argument is not true for a cav-
ity with arbitrary reflection and transmission coefficients.
A remarkable consequence of equations (31) is that the
non-linear calculation is necessary as soon as the number
of photons inside the cavity becomes of the order of unity.

Interesting remarks can be made concerning the par-
ticular case K = 1. Clearly equations (31) show that for a
high finesse cavity no enhancement of photon production
inside the cavity can be obtained when the mechanical ex-
citation frequency equals the lowest cavity mode (K = 1)
in accordance with results in references [5,6]. In this case
the energy E radiated by the cavity corresponds to the
one emitted by a single mirror and the motional intra-
cavity energy vanishes. However, in the general case of
arbitrary cavity finesse motion-induced photons are also
found for the K = 1 mode (cf. Eq. (30)). The key point is
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that as far as classical light rays are concerned the mode
K = 1 behaves like all other modes [7]. However the field
dephasing and thus motion-induced radiation is not only
determined by the behavior of the light rays but also by
the cavity which plays the part of a filtering function and
suppresses photons at zero frequency. As a consequence of
the coupling to radiation pressure photons are not emit-
ted singly but in pairs. Thus motion-induced radiation is
enhanced by the cavity if all photons are emitted into a
cavity mode, the sum of their frequencies being equal to
the mechanical oscillation frequency. In order to fulfill this
condition when the cavity oscillates with the frequency of
the lowest cavity mode photons have to be emitted at zero
frequency. The cavity suppresses those photons the more
efficiently the higher is the cavity finesse. Thus motion-
induced photons for the K = 1 mode can be found in the
bad cavity limit but not in the high finesse limit.

Coming back to the general case, we emphasize that
equations (31) remain valid up to the threshold ρ = 2α,
when the cavity finesse ρ−1 is increased with the ampli-
tude of motion kept constant. Below this value motion-
induced radiation is amplified inside the cavity, but the
cavity losses exceed the amplification gain. As expressions
(31) are monotonous in ρ their maximum values are thus
reached at threshold. In this regime we then find a maxi-
mum of the radiated energy which depends linearly on ρ.
Comparing this value to the maximum energy emitted by
a single oscillating mirror shows a gain of the order of the
cavity finesse by considering a cavity instead of a single
mirror. The cavity is thus a much more favorable system
to produce motion-induced radiation than a single mirror.
Furthermore if one increases the cavity finesse above its
threshold value the roundtrip amplification of the field due
to the mirrors motion should exceed the cavity losses and
the system should enter a regime of exponential amplifi-
cation. Without further calculations we then expect the
oscillating cavity to emit photon pulses of much higher
intensity above threshold than below.

5 Frequency up-conversion

We now turn to the calculation of the radiation spectrum
where we will proceed as previously by first studying the
case of a single moving mirror and afterwards the one of
the oscillating cavity.

The scattering field equation (2) writes in Fourier
space

ϕout[ν] =
√
Tϕin[ν]

+
√
R

∫
dν̄

Ω

2π
ψin[ν̄]

∫
dueiΩ(νu+ν̄V (u))

ν =
ω

Ω
, ν̄ =

ω̄

Ω
(32)

where we have introduced the reduced frequencies ν̄ and
ν normalized with respect to the mechanical frequency Ω.
The field dephasing of the output field is determined by
V (u) and thus associated with the mirrors position Q(u)

which is easily calculated from (17)

ΩQ (u) = Ω
V (u)− u

2
= arctg

(
β cosΩu

1 + β sinΩu

)
· (33)

e2iν̄Q(u) is a periodic function and can thus be developed
into a Fourier series with discrete coefficients γm

e2iν̄ΩQ(u) =
∑
m

γm[ν̄]e−imΩu (34)

which will determine the radiation spectrum. If the mir-
rors motion were sinusoidal these Fourier coefficients
would be given by Bessel functions of different orders. We
have now to evaluate these coefficients for a homographic
trajectory (19).

To this aim, we first write the field dephasing (34) as

e2iΩν̄Q(u) =

(
1 + iβe−iΩu

1− iβeiΩu

)ν̄
· (35)

The Fourier coefficients (34) may be rewritten in terms of
an hypergeometric series1

γm[ν̄] = (−i)m+2 ν̄

π
sin (πν̄)Gm (ν̄, β)

Gm (ν, β) = βm
∑
l≥0

Γ (ν + l)Γ (m− ν + l)

Γ (m+ 1 + l)

β2l

l!
· (36)

The radiation spectrum, that is the spectral density of
the photon number per unit time and defined for positive
frequencies, is then given by [9]

nν = R
∑
m≥ν

ν

m− ν
|γm[m− ν]|2

= R
sin2(πν)

π2

∑
m>ν

ν (m− ν) |Gm (ν, β)|2 . (37)

The total energy may be recovered as the integral of the
spectrum as well as the integral of the energy density.
The radiation spectrum vanishes for all values ν equal to
a natural number, that is for all frequencies ω equal to a
multiple of Ω. The spectrum thus decomposes into a suc-
cession of arches, each limited by two successive multiples
of the excitation frequency.

The upper expression corresponds to reflection upon a
single moving mirror. In order to get the spectral distri-
bution of radiation from the cavity, we now have to take
into account the interferences between light rays having
undergone different number of reflections inside the cav-
ity. We proceed in the same manner as in the case of a
single moving mirror by splitting the function fp into two
parts. The first part is linear in the parameter u while the

1 The coefficient Gm(ν, β) is directly related to the hyper-
geometric function F (ν,m− ν;m+ 1; β2) defined for instance
in [11]. We have also used property 8.334 of the Γ -function in
the same reference.
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second one Qp is induced by the motion and harmonic like
the mirrors’ motion

fp (u) = u− pL+ 2Qp (u)

ΩQp(u) = arctg

(
βp cosΩu

1 + βp sinΩu

)
βp = (−1)Kth (pα) . (38)

The round-trip dephasing 2L corresponds to the case of
periodic orbits so that the function Qp vanishes at these
points. The periodic function e2iν̄Qp can be developed into
a Fourier series with coefficients now depending on the
number of round trips p. We proceed as previously to find
the Fourier coefficients

γm,p[ν̄] =

∫ 2π
Ω

0

Ω

2π
du eimΩueiKπν̄pe2iΩν̄Qp(u)

= (−i)m+2
ν̄

sin (πν̄)

π
eiKπν̄pGm (ν, βp) (39)

and the radiation spectrum

nν =
sin2(πν)

π2

∑
m>ν

ν (m− ν)

×


∣∣∣∣∣√R1T2

∑
n≥0

rne−2iπKν(n+1)Gm (ν, β2n+1)

−
√
R2Gm (ν, β−1)

∣∣∣∣∣
2

+T1T2

∣∣∣∣∣∣
∑
n≥0

rne−2iπKνnGm (ν, β2n)

∣∣∣∣∣∣
2
 · (40)

Let us mention that we recover the predictions of the lin-
earized treatment for a motion with a small velocity by
keeping only the lowest-order term m = 1 in the hyperge-
ometric series. The spectrum is then parabolic and found
to be restricted to the frequency range corresponding to
the first arch [9].

Figure 3 shows the radiation spectrum for an effec-
tive rapidity αeff = 0.9 near the threshold of parametric
oscillation. The spectrum shown here is plotted for a cav-
ity oscillating globally at a frequency of Ω = 3π/L. This
means that the cavity performs three oscillations during
one roundtrip of the field inside the cavity. The dashed
line was obtained by putting formally K = 0 in equation
(40) which eliminates the phase factors responsible for the
interferences. It may be interpreted as the spectrum of ra-
diation emitted by a single oscillating mirror averaged over
the effective velocity. Clearly photons can be created by
higher-order harmonics of the motion as well as by the
fundamental one as soon as the effective velocity becomes
appreciable compared to the speed of light. As a striking
consequence, photons are radiated at frequencies higher

0.0 1.0 2.0 3.0 4.0
ν=ω/Ω

0

nν

Fig. 3. Spectrum of the radiation emitted by the cavity for
αeff = 0.9 and a reflection coefficient of r = 0.99. The top line
of the frame corresponds to α2

eff/4. The peaks correspond to
cavity resonance frequencies. The spectrum is plotted for a cav-
ity oscillating globally at a mechanical frequency Ω = 3π/L.
The dashed line constitutes the envelope of the spectrum. It
was obtained by averaging the spectrum of a single mirror
over the effective velocities corresponding to different num-
ber of roundtrips. Photons are created at frequencies higher
than the mechanical oscillation frequency through frequency
up-conversion in the opto-mechanical coupling between vac-
uum fluctuations and the mirrors motion. Furthermore the ra-
diation spectrum vanishes for frequencies equal to a multiple
integer of the mechanical excitation frequency.

than the mechanical frequency Ω. A process of frequency
up-conversion thus exists in the opto-mechanical coupling
between vacuum fluctuations and mechanical motion of
scatterers. A corresponding situation is found for a sin-
gle oscillating mirror (dashed line) which is however not
realistic as it would imply a mirror’s mechanical veloc-
ity appreciable compared to the speed of light. The use
of a cavity allows to reproduce the same spectral density
within the bandwidth of the cavity resonance lines for re-
alistic mirrors’ velocities. A second striking feature is that
no photons are emitted at frequencies equal to multiple
integers of the excitation frequency Ω neither by a single
oscillating mirror nor by a vibrating cavity.

When comparing the cavity radiation spectrum to ex-
pression (37) corresponding to a single mirror, a difference
is the emergence of peaks typical of cavity resonances. In
fact, the interferences between the pathes corresponding
to different numbers n of round-trips are essentially de-
termined by the factors rne−2inπKν and rne−2iπKν(n+1).
The propagation dephasing after one round-trip is e2iπKν

where K is the order of the mechanical frequency as com-
pared with the fundamental resonance frequency of the
cavity. It follows that the peaks are apparent at frequen-
cies equal to an integer multiple of K−1, as shown in Fig-
ure 3 with K = 3. Their shape is Lorentzian for a high
finesse cavity. The width of each peak is given by the in-
verse of the cavity finesse. The number of peaks fitting into
the interval [0, Ω] corresponds to the order K of the ex-
cited cavity mode compared to the mechanical frequency.
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6 Discussion

In this paper we have presented a non-linear calculation of
motion-induced radiation from a cavity taking fully into
account the accumulation of dephasing through successive
reflections of the field on partly transmitting mirrors. This
approach confirms the main results of the linearized treat-
ment which was previously used and makes it possible to
specify its range of validity. Furthermore the non-linearity
due to the accumulative field dephasing produces partic-
ular signatures of motion-induced radiation which cannot
be calculated within the linear approximation.

In the experimentally relevant case where the mirrors
move with a velocity small compared to the speed of light
the emitted photon number from a single mirror moving
in vacuum scales with its squared velocity. Compared to
this situation motion-induced radiation from an oscillating
cavity is enhanced by the cavity finesse. For high finesse
cavities as they exist for instance in the microwave-regime
this enhancement brings motion-induced radiation within
reach of an experimental observation. This clearly proves
the cavity to be a much more favorable system for the
generation of motion-induced radiation.

In addition the present calculation shows that the lin-
ear approach is valid when the effective rapidity, given
by the mirrors’ physical velocity multiplied by the cav-
ity finesse, is much smaller than 1. We have given here
expressions having a much larger range of validity.

In order to measure motion-induced radiation it is nec-
essary to dispose of signatures which permit to distinguish
vacuum radiation from spurious effects. The present cal-
culation has allowed to identify two quantities showing
signatures which could serve to this aim, the temporal
variation of the radiated energy density and the spectral
density of the emitted photon number.

We have studied the emitted energy density as a func-
tion of different effective rapidities. With increasing ef-
fective rapidity the energy starts to concentrate in pulses
which are emitted periodically into vacuum by the cavity.
These pulses become the higher and the sharper the more
the effective rapidity approaches its threshold value. The
energy density diverges when the single-reflection rapid-
ity equals half of the cavity losses during one roundtrip
(α = ρ/2). The characteristic temporal variation which
allows high energy densities in regularly spaced and nar-
row time windows might be exploited in an experimental
observation.

The spectrum of motion-induced radiation shows sev-
eral remarkable features. First photons may be radiated
at frequencies higher than the mechanical frequency Ω
in contrast to the prediction of the linear treatment. A
process of frequency up-conversion thus takes place in the
opto-mechanical coupling between vacuum fluctuations
and mechanical motion of scatterers. Second the spectrum

always vanishes for all multiple integers of the mechani-
cal oscillation frequency. Due to the opto-mechanical res-
onance condition motion-induced radiation is furthermore
only predicted at particular frequencies corresponding to
fractions of the mechanical oscillation frequency. These
signatures are different from pick-up effects and could
serve to identify motion-induced radiation.

So far we have discussed the behavior of the system in
a regime where the cavity amplifies the dissipative effects
of vacuum fluctuations. However, as a consequence of the
divergence of the energy density there exists a threshold
above which the system will show self-sustained oscilla-
tions in analogy with an optical parametric oscillator [10].
This regime is reached if the cavity finesse is increased
above its threshold value. The amplification of motion-
induced radiation should then exceed the cavity losses.
It is to be expected that in this regime the cavity will
emit photon pulses with much larger intensity than below
threshold. If it were possible to reach this regime exper-
imentally an observation of motion-induced radiation as
well as of its characteristics could be achieved more easily.
It might thus also be interesting to calculate the radiated
energy and the spectrum above threshold. The question
then arises which are the mechanisms limiting the ampli-
fication of radiation in this regime.

In conclusion, these results confirm the idea that it
might be possible to show experimental evidence of the
dissipative effects of motion in quantum vacuum.

We thank M. Brune, M. Devoret, D. Estève, S. Haroche,
J.-M. Raimond and C. Urbina for fruitful discussions.
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